Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset, called DARTS, comprises footprints of retrogressive thaw slump (RTS) identified and quantified using an automated deep learning approach in RTS hotspots across the Arctic and Subarctic permafrost regions. We utilized multispectral PlanetScope imagery with a spatial resolution of ~3 meters (m), complemented by ArcticDEM (Digital Elevation Model) and derived datasets, including slope, relative elevation, and Landsat-derived change trends. The dataset covers an area of 1.6 million square-kilometers (km²), with at least one coverage between 2021 and 2023, and provides annual coverage for approximately 900,000 km². In several highly active key sites, such as Banks Island, Peel Plateau, and Novaya Zemlya, we extended the data frequency and temporal coverage to 2018-2023. We mapped a total of more than 43,000 individual RTS and ALD, many of them multiple times. We offer two levels of datasets; Level 1: RTS footprints per image with timestamps; and Level 2: annually aggregated RTS footprints. Essential metadata includes image footprints, dataset coverage, timestamps, and model-specific information. To enhance reproducibility and further use, the training labels, processing code, and model checkpoints are publicly available. This version, v1.1, is the revised first openly accessible release. The dataset will be maintained and continuously updated in both spatial and temporal extent. It can be used for mapping and quantifying RTS, analyzing spatio-temporal patterns of RTS dynamics, or serving as input for landscape dynamics models.more » « less
-
PixelDINO: Semi-Supervised Semantic Segmentation for Detecting Permafrost Disturbances in the ArcticArctic permafrost is facing significant changes due to global climate change. As these regions are largely inaccessible, remote sensing plays a crucial rule in better understanding the underlying processes across the Arctic. In this study, we focus on the remote detection of retrogressive thaw slumps (RTSs), a permafrost disturbance comparable to slow landslides. For such remote sensing tasks, deep learning has become an indispensable tool, but limited labeled training data remains a challenge for training accurate models. We present PixelDINO, a semi-supervised learning approach, to improve model generalization across the Arctic with a limited number of labels. PixelDINO leverages unlabeled data by training the model to define its own segmentation categories (pseudoclasses), promoting consistent structural learning across strong data augmentations. This allows the model to extract structural information from unlabeled data, supplementing the learning from labeled data. PixelDINO surpasses both supervised baselines and existing semi-supervised methods, achieving average intersection-over-union (IoU) of 30.2 and 39.5 on the two evaluation sets, representing significant improvements of 13% and 21%, respectively, over the strongest existing models. This highlights the potential for training robust models that generalize well to regions that were not included in the training data.more » « less
-
This dataset, called DARTS, comprises footprints of retrogressive thaw slump (RTS) and active layer detachments slides (ALD) identified and quantified using an automated deep learning approach in RTS hotspots across the Arctic and Subarctic permafrost regions. We utilized multispectral PlanetScope imagery with a spatial resolution of 3 meters (m), complemented by ArcticDEM (Digital Elevation Models) and derived datasets, including slope, relative elevation, and Landsat-derived change trends. The dataset covers an area of 1.6 million square-kilometers (km²), with at least one coverage between 2021 and 2023, and provides annual coverage for approximately 900,000 km². In several highly active key sites, such as Banks Island, Peel Plateau, and Novaya Zemlya, we extended the data frequency and temporal coverage to 2018-2023. We mapped a total of more than 43,000 individual RTS and ALD, many of them multiple times. We offer two levels of datasets; Level 1: RTS footprints per image with timestamps; and Level 2: annually aggregated RTS footprints. Essential metadata includes image footprints, dataset coverage, timestamps, and model-specific information. To enhance reproducibility and further use, the training labels, processing code, and model checkpoints are publicly available. This version, v1, is the first openly accessible release. The dataset will be maintained and continuously updated in both spatial and temporal extent. It can be used for mapping and quantifying RTS, analyzing spatio-temporal patterns of RTS dynamics, or serving as input for landscape dynamics models.more » « less
-
null (Ed.)In a warming Arctic, permafrost-related disturbances, such as retrogressive thaw slumps (RTS), are becoming more abundant and dynamic, with serious implications for permafrost stability and bio-geochemical cycles on local to regional scales. Despite recent advances in the field of earth observation, many of these have remained undetected as RTS are highly dynamic, small, and scattered across the remote permafrost region. Here, we assessed the potential strengths and limitations of using deep learning for the automatic segmentation of RTS using PlanetScope satellite imagery, ArcticDEM and auxiliary datasets. We analyzed the transferability and potential for pan-Arctic upscaling and regional cross-validation, with independent training and validation regions, in six different thaw slump-affected regions in Canada and Russia. We further tested state-of-the-art model architectures (UNet, UNet++, DeepLabv3) and encoder networks to find optimal model configurations for potential upscaling to continental scales. The best deep learning models achieved mixed results from good to very good agreement in four of the six regions (maxIoU: 0.39 to 0.58; Lena River, Horton Delta, Herschel Island, Kolguev Island), while they failed in two regions (Banks Island, Tuktoyaktuk). Of the tested architectures, UNet++ performed the best. The large variance in regional performance highlights the requirement for a sufficient quantity, quality and spatial variability in the training data used for segmenting RTS across diverse permafrost landscapes, in varying environmental conditions. With our highly automated and configurable workflow, we see great potential for the transfer to active RTS clusters (e.g., Peel Plateau) and upscaling to much larger regions.more » « less
An official website of the United States government
